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A model of a pneumatic tyre as a system with an infinite number of degrees of freedom is proposed, when its surface is represented
by the deformed surface of a torus. Using a number of hypotheses a functional of the potential energy of the deformations of
the tyre is obtained as a function of the deformations of its tread. A complete system of equations of motion is obtained, assuming
that the wheel rolls without slipping in the area of contact of the tread with the plane, with respect to the previously unknown
part of the tread. In two special cases of the rolling of a wheel with breakaway and on a banking, all the characteristics of the
motion (the contact area, the tyre deformation, and the forces and moments applied to the disc of the wheel) are obtained.
© 1998 Elsevier Science Ltd. All rights reserved.

A number of models of a pneumatic tyre exist, which basically have a finite number of degrees of freedom
and which are based on non-holonomic relations [1-3]. Dynamic effects, related to the deformation of
the tyre over considerable parts of its free surface [4], can be described using a model of a tyre with an
infinite number of degrees of freedom. Unlike the model proposed earlier [5), we consider the deforma-
tion of the whole surface of a torus, which models the tyre shape, in all directions and we determine
the shape of the deformed pneumatic tyre both in the contact area and on its free surface. (In the
previous model [5], the deformation is reduced to the displacement of the load line along the wheel
axis, while the force and moment are proportional to this displacement and its derivative with respect
to the natural parameter at the point of contact.)

1. A MODEL OF A WHEEL WITH A PNEUMATIC TYRE

We will assume that the wheel consists of a disc with an axis (1) (a solid), deformed by the side surface
of the tyre (2) and an inextensible tread (3), along part of which contact occurs, without slipping, between
the wheel and the plane OX,X; (Fig. 1). The system of coordinates Cxyx,x; is obtained from the inertial
system OX X,X; by shifting the origin to the point C (the centre of mass of the undeformed wheel)
and by rotation by an angle B around the CXj axis. The Cx; axis is the axis of rotation of the disc, while
the plane Cxyx; is the middle plane of the wheel and is orthogonal to the OX X, plane. Further, I')(8):
Cxyz — Cxxoxs is the operator of rotation around the Cx, axis by an angle 0, while the system of
coordinates Cxyz is rigidly connected to the disc of the wheel (Fig. 2). We will assume that the side
surface of the tyre in the undeformed state coincides with part of the surface of the torus. One can
change to a toroidal system of coordinates Mn;n,n; by means of the operator I';(@)I'3(y) (Fig. 2). We
will represent the radius vector of a point on the side surface of the tyre in the deformed state in the
system of coordinates OX X,Xj; in the form

3 3
R(o.y,0)= 3 X1, +T;B)I,(0+ w){ae,l + Fg(w>[lm. + b->-:. u; (@, ¥, t)m; ]}

i=]

emod2r, |yi< vy, (1.1)
cos®@ 0 sin@ cosB —-sinf O

I,(8)=[0 1 0 [, LB)=fsinB cosp 0
—sin®@ O cosO 0 0 1
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Fig. 1. Fig. 2.

Here |; is the unit vector if the OX; axis, e,-is the unit vector of the Cx’ axis (Fig. 2), and u;(o, v, t)
is the projection of the displacement vector of a point on the tyre surface onto the axis with unit vector
; of the toroidal system of coordinates.

We will formulate a number of hypotheses by means of which we can express the displacements of
points on the tyre surface in terms of displacements of points of the tread. First, we will assume that
the fibres of the tyre, corresponding to a constant value of the angle ¢, are inextensible. Since the constant
b is the radius of the circle obtained by a section of the torus with a plane passing through the Cx; axis,
by (1.1) we obtain

2 2
aR ) 3 3 Ou J
(5] =t = (wnsmod wn 3 S
and further

(1+ ) +0uy / 3y)? + (u; / OY ~ uy)? +(uy / 3y)? =1 (1.2)

We will henceforth assume that the functions u; and du;/dy are small and we will represent (1.2),
apart from second-order infinitesimals, in the form

ul +au2 /aw = 0 (1.3)
Second, we will assume that the tyre tread is also inextensible, i.e.
aR(9,0,0) ) 3 3w, YV
(——’-’—] =r2=>(1|2><[m,+bz um,-]+b —‘1],.] =r?, r=a+b
ap i=l i=1 0@
y=0
and further

(1+u+9v /39)? + (@ —du/ 3p)> +(dw/ 3p)* =1 (1.4)

u(@,t) =u; (9,0,0b/ r, v(Q,1)=-us(9,0,1)b/r
w(Q,t) = uy (9,0,6)b/ r

Note that the values of the angle y = 0 corresponds to points of the tread. Linearizing relation (1.4),
we obtain

u+ue=0 (1.5)

The functions u, v and w define the displacements of points of the tread in the toroidal system of
coordinates, coinciding in this case, when y = 0, with the cylindrical coordinates Cx’y’z’, when e,. = 0,

€. = M2 €. = M.
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Third, we will assume the curvature of the fibres of the tyre, corresponding to constant angle @, to be
constant. This hypothesis is based on the fact that an inextensible filament, clamped at the ends and acted
upon by a constant distributed normal load (pressure), takes the form of a circle passing through the
ends of the filament in the plane of action of the load. The fibre curvature k can be determined from
the projections of the acceleration of a point on the axis of a Frenet trihedron, namely, | 3’R/oy? | =
b%*. From (1.1) we obtain

3 3 P )
N3 X N3 "I|+§“mi +n3><>:23wn,+2‘. -Tv'f"l, =k =

i=l

ou, %Y (3%, _ou > (o, Y
=(1ruerg-S) oS rse ) o5 v 0

Retaining terms of the zeroth and first order of smallness in (1.6), and taking (1.3) into account, we obtain
d%u, 19y + 0%, 10y =0 1.7)
We will obtain a solution of Eq. (1.7) which, by (1.4) and (1.5), satisfies the conditions

“2(‘P’i‘l’0v’)=0v “2(¢’0’t)=w(¢-t)"/b

(1.8)
Ouy (9,1Y,0) /0y =0,  0uy(9,0,1)/ oy =~u(9,t)r/ b

The general solution of Eq. (1.7) has the form u, = ¢,y + ¢, + c3 cosy + ¢4 sin y, where c; are
functions of ¢ and ¢. Taking boundary conditions (1.8) into account we obtain

=u(P, ) f (¥, Wo) +w(Q,1)g(V¥, W¥,)
(1.9)

= =u(@, ) (¥, Wo) —w(.0)g" (W, o), 0<y=<y,

f(w,\vo)=g'5[(1 —cosYo)V +4, — A, cosy + A, siny]

gy, )= -ErX[—sin YoW — A, +(cos Yy —1)cos Y + sin g sin y]
A=yysinyy—2+2cosyy, A =WyocosWo—sinWy, A, =1-cosyy—y,siny,

In the range of values of y from —y, to zero, we need to replace g by —yg in (1.9). Note that the
function f(y) is even while g(y) is odd.

We expand the function u3(, y, t) in a Taylor series with respect to the variable y in the neighbourhood
of the points y = W, and ¥ = —y, and, confining ourselves in these expansions to the first two terms,
we obtain

(@, 1) =-v (@,1)1-1yl/yy)r/ b (1.10)

Hence, from the deformed state of the tread (the functions u, v, w) we can determine the displace-
ments of the points of the side surface of the tyre (formulae (1.9) and (1.10)). The shape of the deformed
tyre is asymmetrical about the Cxyx; plane, while the derivatives du; (¢, ¥, t)/dy may have discontinuities
when y = 0.

We will calculate the elementary work of the pressure in the tyre for possible displacements of points
on its surface. We have

Yo 2x 3
3A= [ [ pndRdo, OSR=b3 dum;
-V 0 i=1

JR _OJR

2 %22 |ayd
ndo = [acp a\v]dwq)
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and further, apart from terms of the second order of smallness inclusive

Yo 2n .
34 = pb? J" f [sul(%+cosw—%‘f;—+ulcosw—u2s1nw)+
~¥o 0

+8u, (% +cos W](uz - %%) + 5"3(%% *+ u3 cos "’Ild"’d(p (1.11)

In relations (1.11) we must replace u; and du; by expressions (1.9) and (1.10) and integrate them over

The integrand in (1.11) contains the term 8u;(a/b + cos ), linear in du;. To retain the assumed
approximation accuracy we must obtain u; to second-order infinitesimals inclusive, with respect to u,
v and w. From relations (1.2) and (1.6), assuming u; = u;y + z;, where u; are the functions (1.9) and
(1.10) and z; are corrections, quadratic in «, v and w, we obtain, to second-order infinitesimals inclusive
(the prime denotes a derivative with respect to y)

” l ” ’ ] s
oy = -2-uso2 —u3g ~ o (Wio = )’ (1.12)

The right-hand side of Eq. (1.12) is equal to —1/2[u(f” + f) + w(g” + g)I* — v*r’(bwo) %, while the
function z; vanishes when y = 0 and y = vy, The solution of Eq. (1.12) has the form

2(@,W.1) = A (W + Ay (WIW? +2A5(y)uw + Ap(y) v?

where A4; (i = 1, 2, 3) is an even function while 4,3 is an odd function. The functions 4; are specified
in the range [~y, Wy] and are linear combinations of y, V2, cos , sin W and are constant. i\lo difficulties
arise in determining these functions although it is a fairly long process. Substituting (1.9) and (1.10)
into (1.11), replacing du; by -f'3u — g’dw + 8z; and integrating the expressions obtained, taking into
account the evenness and oddness of the corresponding functions with respect to y, we obtain an
expression for the work done by the pressure in possible displacements in the form

2
A=~ jn [ngBu + mudu + ndy + nywdw +nyy (u' v —v’ du)lde (1.13)
0

It is a fairly lengthy process to calculate the coefficients n, (k = 0, .. ., 3) and n,; in explicit form.

Note that ny < 0, while the variation (1.13), taking (1.5) into account, can be represented in the form

12 2 2 214
8A = -8M{v,wl, l'l=-2-I [(my +2n13 0 +nu © + 03w 1do
0

where I is the potential energy of the deformed tyre. When u = v = w = 0 the tyre is in stable equilibrium, and
this means that the functional IT has an isolated minimum and the coefficients n, + 2nyy, n5, n3 are positive.

The second note touches on the constancy of the pressure p. If we assume that the gas in the pneumatic tyre is
a perfect gas, and the processes are isothermal, we have pV' = pgV,, where p, V and py, V; are the pressure and
volume of the gas in the deformed and undeformed tyre, respectively. Then

-1
p=po(]+—A-Y-) =p0(1—£‘-/-+...), V=V, +AV
Yo Yo

Y0 2q
AV=b* | ju,(%+cosw)dwd<p+02 (1.14)
~Yo 0

where O, are second-order and higher infinitesimals in 4, v, w and their derivatives. Taking (1.5) and (1.9) and
the oddness of the function g’(y) into account, we arrive at the conclusion that the quantity AV in (1.14) is of the
second and higher order of smallness in u, v and w and, consequently, the pressure p in (1.11) can be assumed
constant, which corresponds to the assumed accuracy when calculating the work done by the pressure in possible
displacements.



The rolling of a wheel with a pneumatic tyre on a plane 363

2. THE EQUATIONS OF MOTION OF THE WHEEL WITH THE TYRE
The kinetic energy of the wheel is made up of the kinetic energy of the disc
1 3 2 1 T | 22
Ty=—m;Y X;+=J,B°+=J5,0
4=7 JEI i*3 1B > J2d

where my is the mass of the disc and Jy,, /o4 are the moments of inertia of the disc about the axes Cx3
and Cx,, and the kinetic energy of the deformed tyre. As regards the latter we can assume that the whole
mass of the tyre is concentrated in the tread (a uniform inextensible filament), and we can represent
the kinetic energy of the tread in the form

2r
7;,=-;—prj R%(9,0,0)dp, ®=0+¢
0

. 3 . .
R%(¢,0,)= zI X1, + i (BBl XTIy (P)(1+ w)m, + wny —tmy 1} +

+rT3(B)T (D) {6y XI(1 + ), + wny —vn3 ]+ i, +vim, ~ving)
where p is the density per unit length of the tread. Further, we obtain
. 3
I (-9)5(-B)R(9.0,1) = Zl Zmi,  Zi =8+t (2.1)
=
¢, = X, cos®cosP+ X, cosPsinf— Xy sin®d, §;, =i —v0—Pwcos®
Loy ==X, sinB+ X, cosP,  §yy = w+B(1+u)cos®—Pv sin®
§31 = X, sin®cosP + X, sin®sinB+ X; cos®, {3, = v —6(1+u)- Bwsin®
and hence the kinetic energy of the wheel is

T=T,+T, =-’23): X,?+%J,B2+%Jzéz+

i=]

2% . .
+B0 P 1E] + (0 ~Boos®)? + (L +6)7) +
0

+2r§ Gy + Gy + rBeos @)y, ~Bos @)+ Gy — ré) (s, +6)1)de (2.2)

Here m, J| and J, are the mass of the wheel and its moments of inertia in the undeformed state about
the axes Cx; and Cx,.

We will assume that the wheel rolls on the OXX; plane without slipping. This means that in the range
[®1, ;] of variation of the angle ¢, the velocity of points on the tread is equal to zero. From (2.1) we obtain

Z;=0, i=123, ¢@€elo,0,] (2.3)
and the possible displacements satisfy the conditions
8Z;=0, i=123, o@ele;,0,] (2.4)

Relations (2.3) can be replaced by the single holonomic relation R(g, 0, #)l; = 0 and two non-
holonomic relations, for example, Z, = 0 and Z; = 0. Moreover, at the boundary points of contact
between the tread and the plane, corresponding to the angle ¢; and ¢,, we will introduce two constraint
actions v,(¢) and v,(¢), which satisfy the conditions

I (=®)T3(-P)lsv = 0= vy, sin®, — vy, cos D, =0 (2.5)
Vi =(Vip Voo Vi) @ =0, +6; k=12

Conditions (2.5) denote that the constraint actions at the boundary points of the contact line are
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equal to zero in the projection onto the OXj; axis. The work of these forces in possible displacements,
after eliminating the constraints, is

3
84, =X vydZ,, k=12; 8Z, =38Z)

When eliminating constraints (2.3) one must also take into account the work done by the constraint
actions p(9, 1), ¢; < @ < @,, defined in the form

-~ (2.6)

92 3
84, = 3 1(9.08Z,do @7

@ i=1

We will assume that a force and a moment are applied to the wheel disc (Fig. 1), the work of which
in possible displacements is

GAF = F(B)&Xl +F(ﬂ“1t/2)6X2 - P8X3 +M289+M3SB (2.8)
F(B)=F cosp - F;sinB

The equations of motion of the wheel and the conditions where the functions undergo a jump at the
boundary points of the contact line are obtained from Hamilton’s variational principle

t
| (8T +84+84, +84, + 845 +84, +54,)dr =0 (2.9)
h
2x-¢
;= [ Mo.DI(1+u+v")Bu+dv’)+ @ —u')dv —8u’)+ wow’lde
P2

where A(, ¢) is a Lagrange multiplier, corresponding to the condition for the tread to be inextensible
(1.4), while the remaining quantities are given by (1.13) and (2.6)~(2.8). The integration domain [¢,, ,]
U [0, 2x] in (2.9) is split by the curves ¢ = ¢,(f) and @ = @,(¢) into two parts, to each of which Green’s
formula is applied. Hence we obtain the following system of equations

d 2 2
—EVJ'(,T*' I Sn(ll.',d’»ﬂ)d¢+k2] S](V,'k,q)k,ﬂ)+ FP)=0
L] =

d ?2 ] 2 T
-V, T+ s( ; @, ——)d ( - -z L P
prRS v{ i| i @B 2 ‘P*',El Si| Vies @i, B > )+ E p > 0

S; (1, ®,B) =, cos®cosf — 1, sin B+, sindcosP

d

2
d ) k=1

S (U, @) =, sin® ~; cos
d 2
VOT_E;VQT-_r? S3(},I.,~,u,v )d(P—rz S;(V,-,‘,uk,v,‘)+M2 =0
® k=1
S;(u; uv)=py +u;(1+u)
d 2 2
VDT—ZVBT‘-"I S4(|J,,-,¢,u,v, W)d(P—rz S4(V,-k.¢k,uk,vk,wk)+M3 =0
? k=1
Sa(p;, @, uv,w) = weos® -y (14 u)cos @ —v sin @) + Wywsin @
Uy =“(‘Plpt): uk =U((Ppt), wk = W((P/p‘), k =112
V"T—%VﬂT—no —nu+np + Al +utv)+[AMy -u)Y =0, 9€l,
—ng—-nu+mp ' +1r=0, @el
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prstbk[d]k —(—l)kH)\.(U "u,) Il(k) +le = 0
V,,T—%Vu.T—nzv —npu’ +A -w)=[A(J+u+v ) =0, 9el,

ny +nl2u'+u3r=0, (PE Il

pri@, [V ], + (=DF AL+ w40 )|y =V3r =0

VWT-"%VwT—n3W_(}¥W,),=0, (pE 12

mw=Wyr, @€l

pri@ Wl + (=1 AW’ |y +1vy, =0

k=12 §=19,0:0 L =1p;25-9

Here [f(o, )]k = f(or + 0,1) —f(p, — 0, ¢) is the jump of the function at the point ¢, while the subscripts

[(1) and /(2) denote the limits of the corresponding functions as ¢ — ¢, from the left and ¢ — ¢, from
the right. Relations (2.10), in addition to the equations of motion, contain the joining conditions (the
conditions at the jump) on the boundaries of the contact area when ¢ — ¢, and ¢ — ¢,; together with
the constraint equations (1.4) and (2.3) and conditions (2.5) they form a complete set of equations of
the problem (20 relations in all) for the 20 unknowns: X, W;, vi1, vi2 (i = 1, 2, 3), B, 8, u, v, w, A, @4, @,.
In addition, when determining the functions «, v and w one must take into account their continuity at
the points @, and @,, namely, [u], = [V, = [wh =0 (k = 1, 2).

3. ROLLING OF THE WHEEL WITH BREAKAWAY

We will consider special cases of the above problem, namely, the rolling of a wheel with breakaway
and motion on a banking. In these cases we can obtain an analytic solution of the problem and determine
the forces and moments necessary for these situations to occur.

Consider the rolling of a wheel with breakaway, when

B= B =0, Xl =ccose, X,=csing, X;=const, 0=Q
(v, w)e,t)=(U,V,W)a), a=0+Qt-n/2, p(@,1)=p(x)
¢, =-Q, v,=const, k=12, M@, 1)=A(c)
where € is the constant angle of breakaway. The equations of motion (2.10) for the functions «, v, and

w in the contact area and the conditions for rolling without slipping (2.3) can be represented in the
form (the primes denote a derivative with respect to o)

u,r=no +nlU—n|2V', |J.2r=n3W, —u3r=n2V+n,2U'
aelo, 0, o, =0, +QU-n/2 (3.1)
ccosesina=rQQ(U’-V), csing=-rQW’

ccosecosa =rQQ(1+ U+ V')

Assuming that the wheel centre moves along a straight line L = {X, = Xjtge, X3 = const} with constant
velocity c, we will seek a solution of the last three equations of system (3.1), which define the contact
area, taking into account the inextensibility of the tread (1.4) in the form of a section of a straight line
parallel to L. As a result we obtain

U =dasina+d,sina+r"'X; cosa -1
V =docosa+d, coso—r' Xy sinot _ (3.2)
W=-digeo+d,, d=ccose(rQ)”’
where d; and d3 are arbitrary constants. The equations of the contact line in the system of coordinates
0X X,X3 have the form
E, =ccoset - ccoseQ o~ rd, (3.3)

E, =csines—csineQla+rd;, E,=0; aelo,0,]
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It follows from the condition for the tread to be inextensible, that when the angle o changes, the arc
of the tread ro coincides with the corresponding section of the contact area, which is possible when
¢ = rQ. The contact line, by (3.3), is a straight line parallel to the straight line L. Further, the reactions
in the contact area W, ,, B3 are found from the first three equations of (3.1).

The shape of the deformed tread outside the contact area can be found by solving Egs (2.10) for the
functions u, v and w, represented in the form

go(1+U-U"+2V)=ny—nU+n, V' +M1+U+V)+ MV =U")+ M (V-U")=0
go(V =V =2U") =V —npU = NA+U+ V)= MU’ + V") + MV -U")=0 (34)
GW  +mW+ AW +AW” =0, U+V'=0; g, =pr'Q? aela,,2n-a,l

The last equation in (3.4) is the linearized condition for the tread to be inextensible (1.5). Assuming
that the tension in the tread is —A = gy —ng — v(0), where v(a) is a small quantity, and only linear terms
remain in (3.4), we obtain the general solution of the corresponding linear system in the form

V=

Mae

Crexp(Dia), W= A exp(ya), +Ayexp(-ya), U=-V’ aelo,;,2r-0,] 35)
k

%)t %
Dk= '-li(;l2—l+£2"] , ﬁ=l+fﬁj:-”—12-’ ‘Y:(—&J >0
ng ny L)

The form of the roots D, depends on the geometrical characteristics of the tyre (the quantities a, b
and ). The coefficients C;, and A; are found from the conditions imposed on the jump in (2.10), and
the conditions for the functions U, IV and W to be continuous at the boundary points of the contact
area K and K, namely

1

8olU’ ), + (=1 (ng — go XV = U")yy = Vi, (U] =0
2olV' L — (=1 (ng — 8o + V)yuy ==1V3y, V], =0 (3.6)
8olW’1, — (=1 (ny — g )Wyipy = Vap, (W} =0; k=12

Using (3.2) and (3.5) we will represent the joining conditions (3.6) in the form

4
kzl D,:"W,q =amj, m=0,1,2,3 (3.7)
aoj =(COSE—l)aJ +dl’ alj =d2 =1-X3r_l

MV
ay; =(1-cose)a; —d, —g—°coseaj —(~1)f =L
Ry no

. VA

a3 =1 —(I +_’_l_l_+_’£!2_] d2 —g—OCOS€+(—1)J —l‘
ngy ny
wk| = Ck exp[Dk (21t — 0y )] = Ck exp(21tDk)
W2 = G exp(D0p) = G
A, exp((-1)"*'y[2n(2 - 5)+ (-1)* o, ]} = G,,,,
1 m 8o Sin€ . mes T'Vay
G, =—|vd, + (=" 22— —0 ysing—(-1 —E | ms=1,2
ms 2Y [Y 3 ( ) o .ry ( ) 1o :I

The quantities W; are found from the system of linear algebraic equations (3.7) in the form

4 -1
Wy =[H (Di_Dk)] lag;D;' D D} +ay (D} + D} ~ D)~ ay;D; ~ a3}

ik

k=1,.,4, j=1,2 (3.8)
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Assuming exp(Dy0;) = 1 and exp(+yo;) ~ 1, from (3.7) and (3.8) we obtain the relations

Wkl exp(—nD,,) = M2 exp(nDk ), k= l,..., 4
Gjjexp(-Y®) = Gpexp(mn), Jj= 1,2

from which we obtain the equations
-r—(v,l +V;y) =[(l —cose)(1+ H,)—iglcose](az -o,;)+2H,d,
ry ny
'nr—(V“ - V|2) = [2dl "(1 "cose)(a] + a2 )](] + H3) (3.9)
0

é(v,, +V3,) = ~[2d, — (1 - cose)(0yy + 0ty ) H,

L (Vg = Vay) = 2 — 280 COSE -2[1 +4 :o"'z + Hs) dy - (1-cos€)Hg(0t, — )
no ng

—n-r;(vz, +Vy,) =Ythwy[sine(o, +0ty)—2d;]

-"—(VZI —V22)="M-‘Ysinecthm(a2 —(!,)
g ny

H,=D,D,G3/Gs,, H,=(D}-D})ythnD, thrD; /Gy
Hy=DDyGy, /G5, Hy=DyDs(D} - D})thnD; thaby / Gy
Hy = (D} thnD, - D} thnDy)/ Gy, Hg = D\Dy(DE - D2)/ Gy,
G, =D, thaD, - D, thnD;, i,k=1,3

In relations (3.8) and (3.9) we have stipulated that D, = —D, and D, = —D;. The terms in first-order
infinitesimals remaining in the first five equations of (2.10) and in conditions (2.5) can be represented
in the form

Fy = =V = Vyp =r'nyy thny[2d, —sine(a, +@,)] (3.10)
P=—r_lno(a2_a|), M3 =Ny Sine(az"‘al)
Vi1 + Vig + V3,0 + V350, =0=2H,d, +[H; — (1+ H,)cose)} (0o, —

80 COSE
ny

Viy = Vg + V3 00 — V3,009 =0=:(1 )(oc| +0,)+
+[2d, —(1-cose)(a; +0y)J(1+ H3) =0
It follows from relations (3.10) that the conditions for steady rolling of the wheel with breakaway to

exist are the equations M, = —F;, M3 = —Prsine. The remaining characteristics of the steady state are
found from (3.10) in the form

-1
o, — 0y =—n5'Pr, a,+a2=—(l—m] (1+ H)H;'n5' Fyr
o

-1
24, =H;'|:l—(]—cose)(l—&-:£s£] (1+H3)Jn6'iir (3.11)
0
-1
2d, = cthryny' Fyr —sin 8(1 —50-:—°SE] (1+ Hy)H;'ny'Fr
0
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Note that there is no resistance to the rolling of the wheel with breakaway. The latter manifests itself
if dissipative forces related to the deformation of the tyre are introduced.

4. THE ROLLING OF A WHEEL ON A BANKING
We will consider one other steady state of the rolling of the wheel on a banking, when
X, = Rsinwt, X, =—-Rcoswt, X3 =const
B=wt, w=const, 0=Q, ¢,=—-Q=const, k=12 4.1)
(uy,w)o,)=U,V,W)a), oo=0+Q-n/2
p(@.)=p(r), v, =const, k=12, A(Q,t)=A(a)

Here R and Ro is the radius of the banking and the velocity of the wheel centre. The first three
equations of (3.1), in the case when the wheel rolls on a banking, retain their form, while the last three
equations are written in the form

QU’-QV +wWsino = r ' Rosina
QW —w(+U)sino.—wVcosa =0 42)
QV’'+Q(1+U)+wWcosa = r ' Rocosa
Equations (4.2) allow of a first integral
(1+U)cosa —Vsino = Xyr™' (4.3)

while the condition for the tread to be inextensible (1.4) becomes

Ro)?
w2+ Lw- -—) =1
( S (4.4)
The general solution of Eq. (4.4) has the form
R Q w
W=7—;D—cos(aa+8), aela;,0,] (4.5)

where 3 is an arbitrary constant. Further, we obtain from the second equation of (4.2) and (4.3)
U= 9—sin(£a+8)sina+!—3—cosa—l
o Q r

V=%sin(%a+8)cosa—z(f-sina, aela,,0,] (4.6)

We obtain the equations describing the contact area in the system of coordinates OX.X,X; from (1.1)
with y = 0 in the form

E = r%sin(ﬁ——g—a-ﬁ), g, =—-r%cos([3—-?—za—8), E3=0 (4.7)

It follows from relations (4.7) that the contact area is an arc of a circle with centre at the point O
and radius rQ/w. Since the quantities U, V, W, o, o, are small, we arrive at the conclusion that the
quantities §; = Q/mw — R/r and 8 are also small. Hence, in the contact area we obtain, apart from second-
order infinitesimals

U=-d,, V=r'RS, W=-3,, dy=1-r"'X;
U=a+8R/r, V' =d,, W=38+ra/R

The shape of the deformed tread and its tension are found from Eqs (3.4)—(3.6). Equations (3.7)
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have the same form, only their right-hand sides must be taken as follows:
aoj-:aR,r, a'j=d2

R 8 . rV,
a2,=-78—ia,—(—1)f—i

. r'Vq;
&y = _E‘.’._[l+ﬂi"l_2)d2+(_l)l 3
o no - o

Gm_—[-ys, ~(-nm e 30( o, +8) (—1)"'*‘51'&‘-], m,s=1,2
R o

The solution of the equations obtained is determined using the scheme described in Section 3. As a
result we obtain

480 2moR
= - H
fi [R(D,2+1)(D§+1) r } ®

2
F, = mRo? +2(—l—f—‘fy———£r’l}ys, thny+-g£-(1 gkzyz](az -0y)

P=—r"ny(oy —;), dy=—Y%H;"'(a;-a;)

M, =[2noR _ 6207 ]H45

r  R(D}+4)D?+4)

4gorH48 R
, =201+ H,)—~8
RODE+IDE+1)’ 7% (+H)7 (4.8)

The characteristics of the deformed tread o, — o, oy + 0y, 8, 8;, d; and the moments M, and M; are
found from (4.8) for arbitrary values of F), F, and P. We then find the relation between the angular
velocities Q and o using the equation = o(Rr™! + §,).

If we neglect dynamic effects in relations (3.11) and (4.8) between the forces, moments and quantities
characterizing the deformation of the tread, by putting gy = 0, they agree with the corresponding relations
obtained previously in [2, 3, 6].

3=
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